Jumat, 15 Februari 2013

GENETIKA


Genetika (dipinjam dari bahasa Belandagenetica, adaptasi dari bahasa Inggrisgenetics, dibentuk dari kata bahasa Yunani γέννω,genno, yang berarti "melahirkan") adalah cabang biologi yang mempelajari pewarisan sifat pada organisme maupun suborganisme (seperti virus dan prion). Secara singkat dapat juga dikatakan bahwa genetika adalah ilmu tentang gen dan segala aspeknya. Istilah "genetika" diperkenalkan oleh William Bateson pada suatu surat pribadi kepada Adam Chadwick dan ia menggunakannya pada Konferensi Internasional tentang Genetika ke-3 pada tahun 1906.
Bidang kajian genetika dimulai dari wilayah subselular (molekular) hingga populasi. Secara lebih rinci, genetika berusaha menjelaskan

Periode pra-Mendel

Meskipun orang biasanya menetapkan genetika dimulai dengan ditemukannya kembali naskah artikel yang ditulis Gregor Mendelpada tahun 1900, sebetulnya genetika sebagai "ilmu pewarisan" atau hereditas sudah dikenal sejak masa prasejarah, sepertidomestikasi dan pengembangan berbagai ras ternak dan kultivar tanaman. Orang juga sudah mengenal efek persilangan dan perkawinan sekerabat serta membuat sejumlah prosedur dan peraturan mengenai hal tersebut sejak sebelum genetika berdiri sebagai ilmu yang mandiri. Silsilah tentang penyakit pada keluarga, misalnya, sudah dikaji orang sebelum itu. Namun demikian, pengetahuan praktis ini tidak memberikan penjelasan penyebab dari gejala-gejala itu.
Teori populer mengenai pewarisan yang dianut pada masa itu adalah teori pewarisan campur: seseorang mewariskan campuran rata dari sifat-sifat yang dibawa tetuanya, terutama dari pejantan karena membawa sperma. Hasil penelitian Mendel menunjukkan bahwa teori ini tidak berlaku karena sifat-sifat dibawa dalam kombinasi yang dibawa alel-alel khas, bukannya campuran rata. Pendapat terkait lainnya adalah teori Lamarck: sifat yang diperoleh tetua dalam hidupnya diwariskan kepada anaknya. Teori ini juga patah dengan penjelasan Mendel bahwa sifat yang dibawa oleh gen tidak dipengaruhi pengalaman individu yang mewariskan sifat itu[1]. Charles Darwin juga memberikan penjelasan dengan hipotesis pangenesis dan kemudian dimodifikasi oleh Francis Galton[2]. Dalam pendapat ini, sel-sel tubuh menghasilkan partikel-partikel yang disebut gemmula yang akan dikumpulkan di organ reproduksi sebelum pembuahan terjadi. Jadi, setiap sel dalam tubuh memiliki sumbangan bagi sifat-sifat yang akan dibawa zuriat (keturunan).

Pada masa pra-Mendel, orang belum mengenal gen dan kromosom (meskipun DNA sudah diekstraksi namun pada abad ke-19 belum diketahui fungsinya). Saat itu orang masih beranggapan bahwa sifat diwariskan lewat sperma (tetua betina tidak menyumbang apa pun terhadap sifat anaknya).

Konsep dasar

Peletakan dasar ilmiah melalui percobaan sistematik baru dilakukan pada paruh akhir abad ke-19 oleh Gregor Johann Mendel. Ia adalah seorang biarawan dariBrno (Brünn dalam bahasa Jerman), Kekaisaran Austro-Hungaria (sekarang bagian dari Republik Ceko). Mendel disepakati umum sebagai 'pendiri genetika' setelah karyanya "Versuche über Pflanzenhybriden" atau Percobaan mengenai Persilangan Tanaman (dipublikasi cetak pada tahun 1866) ditemukan kembali secara terpisah oleh Hugo de VriesCarl Correns, dan Erich von Tschermak pada tahun 1900. Dalam karyanya itu, Mendel pertama kali menemukan bahwa pewarisan sifat pada tanaman (ia menggunakan tujuh sifat pada tanaman kapriPisum sativum) mengikuti sejumlah nisbah matematika yang sederhana. Yang lebih penting, ia dapat menjelaskan bagaimana nisbah-nisbah ini terjadi, melalui apa yang dikenal sebagai 'Hukum Pewarisan Mendel'.
Dari karya ini, orang mulai mengenal konsep gen (Mendel menyebutnya 'faktor'). Gen adalah pembawa sifat. Alel adalah ekspresi alternatif dari gen dalam kaitan dengan suatu sifat. Setiap individu disomik selalu memiliki sepasang alel, yang berkaitan dengan suatu sifat yang khas, masing-masing berasal dari tetuanya. Status dari pasangan alel ini dinamakan genotipe. Apabila suatu individu memiliki pasangan alel sama, genotipe individu itu bergenotipe homozigot, apabila pasangannya berbeda, genotipe individu yang bersangkutan dalam keadaan heterozigot. Genotipe terkait dengan sifat yang teramati. Sifat yang terkait dengan suatu genotipe disebut fenotipe.

Kronologi perkembangan genetika

Setelah penemuan ulang karya Mendel, genetika berkembang sangat pesat. Perkembangan genetika sering kali menjadi contoh klasik mengenai penggunaanmetode ilmiah dalam ilmu pengetahuan atau sains.
Berikut adalah tahapan-tahapan perkembangan genetika:

Cabang-cabang Genetika

Cabang-cabang murni genetika :
Cabang-cabang terapan genetika :
Bioteknologi merupakan ilmu terapan yang tidak secara langsung merupakan cabang genetika tetapi sangat terkait dengan perkembangan di bidang genetika.

Genetika arah-balik (reverse genetics)

Kajian genetika klasik dimulai dari gejala fenotipe (yang tampak oleh pengamatan manusia) lalu dicarikan penjelasan genotipiknya hingga ke aras gen. Berkembangnya teknik-teknik dalam genetika molekular secara cepat dan efisien memunculkan filosofi baru dalam metodologi genetika, dengan membalik arah kajian. Karena banyak gen yang sudah diidentifikasi sekuensnya, orang memasukkan atau mengubah suatu gen dalam kromosom lalu melihat implikasi fenotipik yang terjadi. Teknik-teknik analisis yang menggunakan filosofi ini dikelompokkan dalam kajian genetika arah-balik atau reverse genetics, sementara teknik kajian genetika klasik dijuluki genetika arah-maju atau forward genetics(http://id.wikipedia.org/wiki/Genetika).

Rekayasa genetika adalah gambaran dari bioteknologi yang di dalamnya meliputi manipulasi gen, kloning gen, DNA rekombinan, teknologi modifikasi genetik, dan genetika modern dengan menggunakan prosedur identifikasi, replikasi, modifikasi dan transfer materi genetik dari sel, jaringan, maupun organ (Karp, 2002; Nicholl, 2002). Sebagian besar teknik yang dilakukan adalah memanipulasi langsung DNA dengan orientasi pada ekspresi gen tertentu. Dalam skala yang lebih luas, rekayasa genetika melibatkan penanda atau marker yang sering disebut sebagai Marker-Assisted Selection (MAS) yang bertujuan meningkatkan efisiensi suatu organisme berdasarkan informasi fenotipnya (Lewin, 1999; Klug dan Cummings, 2002). Salah satu dari aplikasi rekayasa genetika berupa manipulasi genom hewan. Hewan yang sering digunakan menjadi uji coba adalah mamalia. Mamalia memiliki ukuran genom yang lebih besar dan kompleks dibandingkan dengan virus, bakteri, dan tanaman. Sebagai konsekuensinya, untuk memodifikasi genetik dari hewan mamalia harus menggunakan teknik genetika molekular dan teknologi rekombinasi DNA yang memiliki tingkat kerumitan yang kompleks dan mahalnya biaya yang diperlukan dalam penelitian (Murray et al., 1999).

METODE REKAYASA GENETIKA
Beberapa metode yang sering digunakan dalam teknik rekayasa genetika meliputi pengunaan vektor, kloning, PCR (Polymerase Chain Reaction), dan seleksi, screening, serta analisis rekombinan. Adapun langkah-langkah dari rekombinasi genetik meliputi (1) Identifikasi gen yang diharapkan; (2) Pengenalan kode DNA terhadap gen yang diharapkan; (3) Pengaturan ekpresi gen yang sudah direkayasa; dan (4) Pemantauan transmisi gen terhadap keturunannya (BSAS, 2011; Nicholl, 2002).

PEMANFAATAN
Memodifikasi materi genetik hewan telah banyak dilakukan dengan tujuan memiliki berbagai macam manfaat yang bisa diambil, antara lain: (1) Bidang Sains dan Kedokteran~ Hewan yang secara genetika sudah dimodifikasi atau dikenal dengan istilah Genetically Modified Animal (GMA) seperti pada hewan uji yakni mencit dapat digunakan untuk penelitian bagaimana fungsi yang ada pada hewan. Disamping itu juga digunakan untuk memahami dan mengembangkan perlakuan pada penyakit baik pada manusia mapun hewan. (2) Pengobatan Penyakit ~ Beberapa penelitian telah menggunakan protein pada manusia untuk mengobati penyakit tertentu dengan cara mentransfer gen manusia ke dalam gen hewan, misalnya domba atau sapi. Selanjutnya hewan tersebut akan menghasilkan susu yang memiliki protein dari gen manusia yang akan digunakan untuk penyembuhan pada manusia. (3) Modifikasi Hasil Produksi Hewan ~ Beberapa negara melakukan rekayasa genetik pada hewan ternak yang diharapkan akan menghasilkan hewan ternak yang cepat pertumbuhanya, tahan terhadap penyakit, bahkan menghasilkan protein atau susu yang sangat bermanfaat bagi manusia (BSAS, 2011).

PERKEMBANGAN TERBARU REKAYASA GENETIKA HEWAN
  • GlowFish – Ikan Bercahaya GloFish merupakan salah satu contoh hewan transgenik yang direkayasa secara genetiknya. Ikan ini dikembagkan dari Amerika Serikat yang merekayasa DNA dari ikan zebra (Danio rerio) dengan gen pengkode protein flourens warna hijau dari gfp (green flourescent protein). Namun secara fenotip, warna yang dihasilkan bukan hanya warna hijau saja melainkan warna kuning hingga merah (Pray, 2008).
  • Lembu Transgenik Penghasil Protein Susu ~ Rekombinan Teknologi transgenik ini telah sukses dilakukan untuk kepentingan di bidang agrikultur dalam meningkatkan mutu kualitas pangan. Pada hewan uji yang berupa lembu jarang sekali dilakukan percobaan transgenik hal ini dikarenakan banyak kendala seperti masa regenerasinya butuh waktu sekitar 2 tahun. Namun para peneliti akhirnya bisa menyisipi gen penghasil α-lactalbumin yang berasal dari manusia. Dari hasil uji produksi susu sebesar 91 ml, ditemukan sekresi α–lactalbumin dengan konsentrasi 2,4 mg ml-1 (Eyestone, 1999). Metode yang digunakan adalah melakukan fertilisasi secara in vitro yang selanjutnya akan dihasilkan zigot. Tahap berikutnya zigot akan diinjeksi dengan DNA yang mengandung gen α–lactalbumin. Proses injeksi dengan menggunkan teknik microinjection (Gambar 2). Selanjutnya zigot dikultur selama 6 atau 7 hari dengan menggunakan media sintetik yang menyerupai cairan oviduk. Setelah itu akan tumbuh menjadi embrio dan ditransfer ke rahim lembu untuk proses kehamilan (Eyestone, 1999). 

  • Kelinci Penghasil Bispesifik T-Cell Antibody ~ Salah satu penyakit pada manusia yang mematikan adalah kanker. Penyakit ini dapat diatasi dengan meningkatkan antibodi sel T. Sekarang dengan menggunakan rekayasa genetika, kelinci dapat dipakai sebagai hewan uji untuk menghasilkan dua macam antibodi spesifik, yakni molekul CD28 dan r28M yang mampu menginduksi TCR/CD3 yang mampu membunuh sel kanker. Dengan ditemukannya antibodi bispesifik ini dapat diharapkan untuk mendapatkan cukup banyak pengetahuan tentang antibodi bispesifik bagi aplikasi medis (Hovest et al.,2004). 

  • Ayam Penghasil Tetrasiklin ~ Penemuan ini merupakan terobosan baru dalam mengembangkan bioreaktor yang mampu menghasilkan biofarmasi dalam jumlah kuantitas yang besar. Tetrasiklin merupakan antibiotik yang diperlukan dalam dunia medis untuk men-treatment pasien. Selama ini tetrasiklin dihasilkan dari mikroorganisme. Dengan terobosan baru ini, diharapkan ayam transgenik mampu menghasilkan tetrasiklin dalam jumlah yang lebih banyak serta lebih hemat dalam proses pembutannya.

    Dalam penelitian ini digunakan retrovirus sebagai vektornya. Dimana retrovirus didesain untuk membawa materi genetik berupa GFP (Green Flourescent Protein) dan rtTA (reverse tetracycline-controlled transactivator) dibawah pengontrolan tetracycline-inducible promoter dan PGK (Phosphoglycerate Kinase) promoter. Setelah itu, ayam transgenik dihasilkan yang mana pada bagian telur ditemukan doxycycline yang merupakan derivat dari tetrasiklin serta tidak ditemukan adanya disfungsi fisiologis secara signifikan dari telur tersebut (Kwon, 2011). 

  • Sapi Penghasil Omega 3 ~ n-3 Polyunsaturated fatty acids (n-3 PUFA) atau omega 3 merupakan salah satu zat yang sangat penting bagi manusia. Dengan pendekatan secara ekonomi, maka dapat dihasilkan omega 3 dengan cara merekayasa sapi menjadi hewan transgenik penghasil omega 3. Sapi yang direkayasa disisipi dengan gen mfat-1 yang mampu memproduksi n-3 PUFA. Dari penelitian ini diperoleh hasil ekpresi gen berupa n-3 PUFA pada jaringan dan susu sapi (Wu, 2011).  

  • Tikus Transgenik Resisten Terhadap Infeksi Bakteri ~ Resistensi suatu bakteri terhadap jenis antibiotik merupakan salah satu masalah yang serius bagi dunia medis dan farmasi. Oleh karena itu diperlukan suatu hewan ternak yang mampu menghasilkan protein antibiotik. Namun, dalam hal ini tikus digunakan sebagai uji coba terlebih dahulu. Salah satu protein penghasil antimikroba adalah Protegrin-1 (PG-1) yang meru-pakan derivat dari neutrofil. Pada percobaan ini, digunakan cDNA melalui reverse transkripsi-PCR (RT-PCR) dengan primer upstream 5′-ATGGAGACCCAGAGAGCCAG-3′ dan primer downstream 5′-TCATCCTCGTCCGACA CAGA-3′. Adapun gen yang mengkode PG-1 adalah gen PG-1-His (Gambar 3).
  
Gambar 3. Gen PG-1-His yang menghasilkan protein antimikroba (Protegrin-1). 


Setelah dilakukan penyisipan gen, maka tikus transgenik tersebut diinjeksi dengan bakteri Actinobacillus suis pada paru-parunya. Sebagai perbandingan dilakukan injeksi pula pada tikus tipe alami (WT=wild type). Pada percobaan ini dilakukan tiga variasi, dimana paru-paru tikus diinkubasi dengan media phosphate-buffered saline(PBS; pH 7,4), paru-paru tikus transgenik (TG), dan paru-paru tikus tipe alami (WT). Dari percobaan tersebut dihasilkan sesuai dengan Gambar 4. 

Gambar 4. Histopatologi dari jaringan paru-paru berbagai perlakuan setelah
dinjeksi dengan bakteri Actinobacillus suis.


Berdasarkan gambar tersebut, jaringan paru-paru yang diinkubasikan di media PBS (Gambar a, b, c) menunjukkan hasil penampakkan yang masih normal. Sementara pada paru-paru tikus transgenik (gambar d, e, f) menunjukkan adanya penumpukkan neutrofil. Kemudian pada paru-paru tikus tipe alami (gambar g, h, i) menunjukkan adanya neutrofil dan makrofag dalam jumlah yang besar, sehingga jaringan tersebut mengalami kerusakan akibat infeksi bakteri Actinobacillus suis (Queenie, 2008).
(http://biology-community.blogspot.com/2012/09/rekayasa-genetika-hewan.html).

HUKUM MENDEL

Hukum pewarisan Mendel adalah hukum mengenai pewarisan sifat pada organisme yang dijabarkan oleh Gregor Johann Mendel dalam karyanya 'Percobaan mengenai Persilangan Tanaman'. Hukum ini terdiri dari dua bagian:
1.     Hukum pemisahan (segregation) dari Mendel, juga dikenal sebagai Hukum Pertama Mendel, dan
2.     Hukum berpasangan secara bebas (independent assortment) dari Mendel, juga dikenal sebagai Hukum Kedua Mendel.
Hukum segregasi (Hukum Pertama Mendel)
Hukum segregasi bebas menyatakan bahwa pada pembentukan gamet (sel kelamin), kedua gen induk (Parent) yang merupakan pasangan alel akan memisah sehingga tiap-tiap gamet menerima satu gen dari induknya.
Secara garis besar, hukum ini mencakup tiga pokok:
1.     Gen memiliki bentuk-bentuk alternatif yang mengatur variasi pada karakter turunannya. Ini adalah konsep mengenai dua macam alel; alel resisif (tidak selalu nampak dari luar, dinyatakan dengan huruf kecil, misalnya w dalam gambar di sebelah), dan alel dominan (nampak dari luar, dinyatakan dengan huruf besar, misalnya R).
2.     Setiap individu membawa sepasang gen, satu dari tetua jantan (misalnya ww dalam gambar di sebelah) dan satu dari tetua betina (misalnya RR dalam gambar di sebelah).
3.     Jika sepasang gen ini merupakan dua alel yang berbeda (Sb dan sB pada gambar 2), alel dominan (S atau B) akan selalu terekspresikan (nampak secara visual dari luar). Alel resesif (s atau b) yang tidak selalu terekspresikan, tetap akan diwariskan pada gamet yang dibentuk pada turunannya.

Hukum Asortasi Bebas (Hukum kedua Mendel)
Perbandingan antara B (warna coklat), b (warna merah), S (buntut pendek), dan s (buntut panjang) pada generasi F2
Hukum kedua Mendel menyatakan bahwa bila dua individu mempunyai dua pasang atau lebih sifat, maka diturunkannya sepasang sifat secara bebas, tidak bergantung pada pasangan sifat yang lain. Dengan kata lain, alel dengan gen sifat yang berbeda tidak saling memengaruhi. Hal ini menjelaskan bahwa gen yang menentukan e.g. tinggi tanaman dengan warna bunga suatu tanaman, tidak saling memengaruhi.
Seperti nampak pada gambar 1, induk jantan (tingkat 1) mempunyai genotipe ww (secara fenotipe berwarna putih), dan induk betina mempunyai genotipe RR (secara fenotipe berwarna merah). Keturunan pertama (tingkat 2 pada gambar) merupakan persilangan dari genotipe induk jantan dan induk betinanya, sehingga membentuk 4 individu baru (semuanya bergenotipe wR). Selanjutnya, persilangan/perkawinan dari keturuan pertama ini akan membentuk indidividu pada keturunan berikutnya (tingkat 3 pada gambar) dengan gamet R dan w pada sisi kiri (induk jantan tingkat 2) dan gamet R dan w pada baris atas (induk betina tingkat 2). Kombinasi gamet-gamet ini akan membentuk 4 kemungkinan individu seperti nampak pada papan catur pada tingkat 3 dengan genotipe: RR, Rw, Rw, dan ww. Jadi pada tingkat 3 ini perbandingan genotipe RR , (berwarna merah) Rw (juga berwarna merah) dan ww (berwarna putih) adalah 1:2:1. Secara fenotipe perbandingan individu merah dan individu putih adalah 3:1.
Kalau contoh pada gambar 1 merupakan kombinasi dari induk dengan satu sifat dominan (berupa warna), maka contoh ke-2 menggambarkan induk-induk dengan 2 macam sifat dominan: bentuk buntut dan warna kulit. Persilangan dari induk dengan satu sifat dominan disebut monohibrid, sedang persilangan dari induk-induk dengan dua sifat dominan dikenal sebagai dihibrid, dan seterusnya.
Pada gambar 2, sifat dominannya adalah bentuk buntut (pendek dengan genotipe SS dan panjang dengan genotipe ss) serta warna kulit (putih dengan genotipe bb dan coklat dengan genotipe BB). Gamet induk jantan yang terbentuk adalah Sb dan Sb, sementara gamet induk betinanya adalah sB dan sB (nampak pada huruf di bawah kotak). Kombinasi gamet ini akan membentuk 4 individu pada tingkat F1 dengan genotipe SsBb (semua sama). Jika keturunan F1 ini kemudian dikawinkan lagi, maka akan membentuk individu keturunan F2. Gamet F1nya nampak pada sisi kiri dan baris atas pada papan catur. Hasil individu yang terbentuk pada tingkat F2 mempunyai 16 macam kemungkinan dengan 2 bentuk buntut: pendek (jika genotipenya SS atau Ss) dan panjang (jika genotipenya ss); dan 2 macam warna kulit: coklat (jika genotipenya BB atau Bb) dan putih (jika genotipenya bb). Perbandingan hasil warna coklat:putih adalah 12:4, sedang perbandingan hasil bentuk buntut pendek:panjang adalah 12:4. Perbandingan detail mengenai genotipe SSBB:SSBb:SsBB:SsBb: SSbb:Ssbb:ssBB:ssBb: ssbb adalah 1:2:2:4: 1:2:1:2: (1.http://id.wikipedia.org/wiki/Hukum_Pewarisan_Mendel)
.



Tidak ada komentar:

Posting Komentar